Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

The genetics of exapted resistance to two exotic pathogens in pedunculate oak.

Identifieur interne : 000026 ( Main/Exploration ); précédent : 000025; suivant : 000027

The genetics of exapted resistance to two exotic pathogens in pedunculate oak.

Auteurs : Jérôme Bartholomé [France] ; Benjamin Brachi [France] ; Benoit Marçais [France] ; Amira Mougou-Hamdane [France, Tunisie] ; Catherine Bodénès [France] ; Christophe Plomion [France] ; Cécile Robin [France] ; Marie-Laure Desprez-Loustau [France]

Source :

RBID : pubmed:31711257

Abstract

Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.

DOI: 10.1111/nph.16319
PubMed: 31711257


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">The genetics of exapted resistance to two exotic pathogens in pedunculate oak.</title>
<author>
<name sortKey="Bartholome, Jerome" sort="Bartholome, Jerome" uniqKey="Bartholome J" first="Jérôme" last="Bartholomé">Jérôme Bartholomé</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brachi, Benjamin" sort="Brachi, Benjamin" uniqKey="Brachi B" first="Benjamin" last="Brachi">Benjamin Brachi</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marcais, Benoit" sort="Marcais, Benoit" uniqKey="Marcais B" first="Benoit" last="Marçais">Benoit Marçais</name>
<affiliation wicri:level="4">
<nlm:affiliation>IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mougou Hamdane, Amira" sort="Mougou Hamdane, Amira" uniqKey="Mougou Hamdane A" first="Amira" last="Mougou-Hamdane">Amira Mougou-Hamdane</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082</wicri:regionArea>
<wicri:noRegion>1082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bodenes, Catherine" sort="Bodenes, Catherine" uniqKey="Bodenes C" first="Catherine" last="Bodénès">Catherine Bodénès</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Plomion, Christophe" sort="Plomion, Christophe" uniqKey="Plomion C" first="Christophe" last="Plomion">Christophe Plomion</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Robin, Cecile" sort="Robin, Cecile" uniqKey="Robin C" first="Cécile" last="Robin">Cécile Robin</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Desprez Loustau, Marie Laure" sort="Desprez Loustau, Marie Laure" uniqKey="Desprez Loustau M" first="Marie-Laure" last="Desprez-Loustau">Marie-Laure Desprez-Loustau</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:31711257</idno>
<idno type="pmid">31711257</idno>
<idno type="doi">10.1111/nph.16319</idno>
<idno type="wicri:Area/Main/Corpus">000350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000350</idno>
<idno type="wicri:Area/Main/Curation">000350</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000350</idno>
<idno type="wicri:Area/Main/Exploration">000350</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">The genetics of exapted resistance to two exotic pathogens in pedunculate oak.</title>
<author>
<name sortKey="Bartholome, Jerome" sort="Bartholome, Jerome" uniqKey="Bartholome J" first="Jérôme" last="Bartholomé">Jérôme Bartholomé</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
<affiliation wicri:level="3">
<nlm:affiliation>CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Occitanie (région administrative)</region>
<region type="old region" nuts="2">Languedoc-Roussillon</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Brachi, Benjamin" sort="Brachi, Benjamin" uniqKey="Brachi B" first="Benjamin" last="Brachi">Benjamin Brachi</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Marcais, Benoit" sort="Marcais, Benoit" uniqKey="Marcais B" first="Benoit" last="Marçais">Benoit Marçais</name>
<affiliation wicri:level="4">
<nlm:affiliation>IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Lorraine (région)</region>
</placeName>
<orgName type="university">Université de Lorraine</orgName>
</affiliation>
</author>
<author>
<name sortKey="Mougou Hamdane, Amira" sort="Mougou Hamdane, Amira" uniqKey="Mougou Hamdane A" first="Amira" last="Mougou-Hamdane">Amira Mougou-Hamdane</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
<affiliation wicri:level="1">
<nlm:affiliation>Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082, Tunisia.</nlm:affiliation>
<country xml:lang="fr">Tunisie</country>
<wicri:regionArea>Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082</wicri:regionArea>
<wicri:noRegion>1082</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Bodenes, Catherine" sort="Bodenes, Catherine" uniqKey="Bodenes C" first="Catherine" last="Bodénès">Catherine Bodénès</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Plomion, Christophe" sort="Plomion, Christophe" uniqKey="Plomion C" first="Christophe" last="Plomion">Christophe Plomion</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Robin, Cecile" sort="Robin, Cecile" uniqKey="Robin C" first="Cécile" last="Robin">Cécile Robin</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
<author>
<name sortKey="Desprez Loustau, Marie Laure" sort="Desprez Loustau, Marie Laure" uniqKey="Desprez Loustau M" first="Marie-Laure" last="Desprez-Loustau">Marie-Laure Desprez-Loustau</name>
<affiliation wicri:level="4">
<nlm:affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Nouvelle-Aquitaine</region>
<region type="old region" nuts="2">Aquitaine</region>
</placeName>
<orgName type="university">Université de Bordeaux</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">The New phytologist</title>
<idno type="eISSN">1469-8137</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="In-Process" Owner="NLM">
<PMID Version="1">31711257</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1469-8137</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>226</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2020</Year>
<Month>05</Month>
</PubDate>
</JournalIssue>
<Title>The New phytologist</Title>
<ISOAbbreviation>New Phytol</ISOAbbreviation>
</Journal>
<ArticleTitle>The genetics of exapted resistance to two exotic pathogens in pedunculate oak.</ArticleTitle>
<Pagination>
<MedlinePgn>1088-1103</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1111/nph.16319</ELocationID>
<Abstract>
<AbstractText>Exotic pathogens cause severe damage in natural populations in the absence of coevolutionary dynamics with their hosts. However, some resistance to such pathogens may occur in naive populations. The objective of this study was to investigate the genetics of this so-called 'exapted' resistance to two pathogens of Asian origin (Erysiphe alphitoides and Phytophthora cinnamomi) in European oak. Host-pathogen compatibility was assessed by recording infection success and pathogen growth in a full-sib family of Quercus robur under controlled and natural conditions. Two high-resolution genetic maps anchored on the reference genome were used to study the genetic architecture of resistance and to identify positional candidate genes. Two genomic regions, each containing six strong and stable quantitative trait loci (QTLs) accounting for 12-19% of the phenotypic variation, were mainly associated with E. alphitoides infection. Candidate genes, especially genes encoding receptor-like-kinases and galactinol synthases, were identified in these regions. The three QTLs associated with P. cinnamomi infection did not colocate with QTLs found for E. alphitoides. These findings provide evidence that exapted resistance to E. alphitoides and P. cinnamomi is present in Q. robur and suggest that the underlying molecular mechanisms involve genes encoding proteins with extracellular signaling functions.</AbstractText>
<CopyrightInformation>© 2019 The Authors. New Phytologist © 2019 New Phytologist Trust.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Bartholomé</LastName>
<ForeName>Jérôme</ForeName>
<Initials>J</Initials>
<Identifier Source="ORCID">0000-0002-0855-3828</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>AGAP, Université de Montpellier, CIRAD, INRA, Montpellier SupAgro, Montpellier, 34398, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>CIRAD, UMR AGAP, TA A-108 / 03 - Avenue Agropolis, Montpellier, 34398, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Brachi</LastName>
<ForeName>Benjamin</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0001-5988-7150</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Marçais</LastName>
<ForeName>Benoit</ForeName>
<Initials>B</Initials>
<Identifier Source="ORCID">0000-0002-8107-644X</Identifier>
<AffiliationInfo>
<Affiliation>IAM, INRA, Université de Lorraine, Champenoux, Nancy, 54000, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mougou-Hamdane</LastName>
<ForeName>Amira</ForeName>
<Initials>A</Initials>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
<AffiliationInfo>
<Affiliation>Institut National Agronomique de Tunisie, Université de Carthage, 43 avenue Charles Nicolle Cité el Mahrajène, Tunis, 1082, Tunisia.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Bodénès</LastName>
<ForeName>Catherine</ForeName>
<Initials>C</Initials>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Plomion</LastName>
<ForeName>Christophe</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-3176-2767</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Robin</LastName>
<ForeName>Cécile</ForeName>
<Initials>C</Initials>
<Identifier Source="ORCID">0000-0002-8145-245X</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Desprez-Loustau</LastName>
<ForeName>Marie-Laure</ForeName>
<Initials>ML</Initials>
<Identifier Source="ORCID">0000-0001-6457-1089</Identifier>
<AffiliationInfo>
<Affiliation>BIOGECO, INRA, Université de Bordeaux, 69 route d'Arcachon, Cestas, 33610, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2019</Year>
<Month>12</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>England</Country>
<MedlineTA>New Phytol</MedlineTA>
<NlmUniqueID>9882884</NlmUniqueID>
<ISSNLinking>0028-646X</ISSNLinking>
</MedlineJournalInfo>
<CitationSubset>IM</CitationSubset>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="Y">Erysiphe alphitoides </Keyword>
<Keyword MajorTopicYN="Y">Phytophthora cinnamomi </Keyword>
<Keyword MajorTopicYN="Y">Quercus robur </Keyword>
<Keyword MajorTopicYN="Y">disease resistance</Keyword>
<Keyword MajorTopicYN="Y">exapted resistance</Keyword>
<Keyword MajorTopicYN="Y">powdery mildew</Keyword>
<Keyword MajorTopicYN="Y">quantitative trait loci (QTL)</Keyword>
<Keyword MajorTopicYN="Y">receptor-like kinase</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>02</Month>
<Day>13</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2019</Year>
<Month>11</Month>
<Day>05</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2019</Year>
<Month>11</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">31711257</ArticleId>
<ArticleId IdType="doi">10.1111/nph.16319</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>References</Title>
<Reference>
<Citation>Acevedo-Garcia J, Kusch S, Panstruga R. 2014. Magical mystery tour: MLO proteins in plant immunity and beyond. New Phytologist 204: 273-281.</Citation>
</Reference>
<Reference>
<Citation>Alves AA, Rosado CCG, Faria DA, Guimarães LdMS, Lau D, Brommonschenkel SH, Grattapaglia D, Alfenas AC. 2011. Genetic mapping provides evidence for the role of additive and non-additive QTLs in the response of inter-specific hybrids of Eucalyptus to Puccinia psidii rust infection. Euphytica 183: 27-38.</Citation>
</Reference>
<Reference>
<Citation>Bacete L, Mélida H, Miedes E, Molina A. 2018. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses. The Plant Journal 93: 614-636.</Citation>
</Reference>
<Reference>
<Citation>Bai Y, Pavan S, Zheng Z, Zappel NF, Reinstädler A, Lotti C, De Giovanni C, Ricciardi L, Lindhout P, Visser R et al. 2007. Naturally occurring broad-spectrum powdery mildew resistance in a central American tomato accession is caused by loss of Mlo function. Molecular Plant-Microbe Interactions 21: 30-39.</Citation>
</Reference>
<Reference>
<Citation>Barreneche T, Bodenes C, Lexer C, Trontin JF, Fluch S, Streiff R, Plomion C, Roussel G, Steinkellner H, Burg K et al. 1998. A genetic linkage map of Quercus robur L. (pedunculate oak) based on RAPD, SCAR, microsatellite, minisatellite, isozyme and 5S rDNA markers. Theoretical and Applied Genetics 97: 1090-1103.</Citation>
</Reference>
<Reference>
<Citation>Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.</Citation>
</Reference>
<Reference>
<Citation>Beaulieu J, Doerksen T, Clement S, MacKay J, Bousquet J. 2014. Accuracy of genomic selection models in a large population of open-pollinated families in white spruce. Heredity 113: 343-352.</Citation>
</Reference>
<Reference>
<Citation>Bingham RT, Hoff RJ, McDonald GI. 1971. Disease resistance in forest trees. Annual Review of Phytopathology 9: 433-452.</Citation>
</Reference>
<Reference>
<Citation>Bodénès C, Chancerel E, Ehrenmann F, Kremer A, Plomion C. 2016. High-density linkage mapping and distribution of segregation distortion regions in the oak genome. DNA Research 23: 115-124.</Citation>
</Reference>
<Reference>
<Citation>Broman KW, Wu H, Sen Ś, Churchill GA. 2003. R/qtl: QTL mapping in experimental crosses. Bioinformatics 19: 889-890.</Citation>
</Reference>
<Reference>
<Citation>Bruns E. 2016. Fitness costs of plant disease resistance. In: eLS. Chichester, UK: Wiley. doi: 10.1002/9780470015902.a0020094.pub2.</Citation>
</Reference>
<Reference>
<Citation>Budde KB, Nielsen LR, Ravn HP, Kjaer ED. 2016. The natural evolutionary potential of tree populations to cope with newly introduced pests and pathogens - lessons learned from forest health catastrophes in recent decades. Current Forestry Reports 2: 18-29.</Citation>
</Reference>
<Reference>
<Citation>Butler JB, Freeman JS, Vaillancourt RE, Potts BM, Glen M, Lee DJ, Pegg GS. 2016. Evidence for different QTL underlying the immune and hypersensitive responses of Eucalyptus globulus to the rust pathogen Puccinia psidii. Tree Genetics & Genomes 12: e39.</Citation>
</Reference>
<Reference>
<Citation>Calenge F, Durel CE. 2006. Both stable and unstable QTLs for resistance to powdery mildew are detected in apple after four years of field assessments. Molecular Breeding 17: 329-339.</Citation>
</Reference>
<Reference>
<Citation>Carson SD, Carson MJ. 1989. Breeding for resistance in forest trees - a quantitative genetic approach. Annual Review of Phytopathology 27: 373-395.</Citation>
</Reference>
<Reference>
<Citation>Dantec CF, Ducasse H, Capdevielle X, Fabreguettes O, Delzon S, Desprez-Loustau M-L. 2015. Escape of spring frost and disease through phenological variations in oak populations along elevation gradients. Journal of Ecology 103: 1044-1056.</Citation>
</Reference>
<Reference>
<Citation>Delatour C, Desprez-Loustau M-L, Robin C. 2000. Pathogenicity of Phytophthora species on oaks. In: Hansen EM, Sutton W, eds. Phytophthora diseases of forest trees. Proceedings from the First international Meeting on Phytophthoras in Forest and Wildland Ecosystems, Grants Pass, Oregon, USA. Corvallis, OR, USA: Oregon State University, 102-104.</Citation>
</Reference>
<Reference>
<Citation>Denancé N, Sánchez-Vallet A, Goffner D, Molina A. 2013. Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Frontiers in Plant Science 4: e155.</Citation>
</Reference>
<Reference>
<Citation>Derory J, Léger P, Garcia V, Schaeffer J, Hauser M-T, Salin F, Luschnig C, Plomion C, Glössl J, Kremer A. 2006. Transcriptome analysis of bud burst in sessile oak (Quercus petraea). New Phytologist 170: 723-738.</Citation>
</Reference>
<Reference>
<Citation>Derory J, Scotti-Saintagne C, Bertocchi E, Le Dantec L, Graignic N, Jauffres A, Casasoli M, Chancerel E, Bodénès C, Alberto F et al. 2010. Contrasting relationships between the diversity of candidate genes and variation of bud burst in natural and segregating populations of European oaks. Heredity 104: 438-448.</Citation>
</Reference>
<Reference>
<Citation>Deshmukh R, Singh VK, Singh BD. 2017. Mining the Cicer arietinum genome for the mildew locus O (Mlo) gene family and comparative evolutionary analysis of the Mlo genes from Medicago truncatula and some other plant species. Journal of Plant Research 130: 239-253.</Citation>
</Reference>
<Reference>
<Citation>Desprez-Loustau M-L, Feau N, Mougou-Hamdane A, Dutech C. 2011. Interspecific and intraspecific diversity in oak powdery mildews in Europe: coevolution history and adaptation to their hosts. Mycoscience 52: 165-173.</Citation>
</Reference>
<Reference>
<Citation>Desprez-Loustau M, Robin C, Buee M, Courtecuisse R, Garbaye J, Suffert F, Sache I, Rizzo D. 2007. The fungal dimension of biological invasions. Trends in Ecology & Evolution 22: 472-480.</Citation>
</Reference>
<Reference>
<Citation>Desprez-Loustau M-L, Saint-Jean G, Barrès B, Dantec CF, Dutech C. 2014. Oak powdery mildew changes growth patterns in its host tree: host tolerance response and potential manipulation of host physiology by the parasite. Annals of Forest Science 71: 563-573.</Citation>
</Reference>
<Reference>
<Citation>Duxbury EM, Day JP, Vespasiani DM, Thüringer Y, Tolosana I, Smith SC, Tagliaferri L, Kamacioglu A, Lindsley I, Love L et al. 2019. Host-pathogen coevolution increases genetic variation in susceptibility to infection. eLife 8: e46440.</Citation>
</Reference>
<Reference>
<Citation>Edwards MC, Ayres PG. 1982. Seasonal changes in resistance of Quercus petraea (sessile oak) leaves to Microsphaera alphitoides. Transactions of the British Mycological Society 78: 569-571.</Citation>
</Reference>
<Reference>
<Citation>Ekholm A, Roslin T, Pulkkinen P, Tack AJ. 2017. Dispersal, host genotype and environment shape the spatial dynamics of a parasite in the wild. Ecology 98: 2574-2584.</Citation>
</Reference>
<Reference>
<Citation>Endelman JB. 2011. Ridge regression and other kernels for genomic selection with R package rrblup. Plant Genome 4: 250-255.</Citation>
</Reference>
<Reference>
<Citation>Endelman JB, Jannink J-L. 2012. Shrinkage estimation of the realized relationship matrix. G3: Genes|Genomes|Genetics 2: 1405-1413.</Citation>
</Reference>
<Reference>
<Citation>Ennos RA. 2015. Resilience of forests to pathogens: an evolutionary ecology perspective. Forestry: An International Journal of Forest Research 88: 41-52.</Citation>
</Reference>
<Reference>
<Citation>Falavigna VdS, Porto DD, Miotto YE, Santos HPd, Oliveira PRDd, Margis-Pinheiro M, Pasquali G, Revers LF. 2018. Evolutionary diversification of galactinol synthases in Rosaceae: adaptive roles of galactinol and raffinose during apple bud dormancy. Journal of Experimental Botany 69: 1247-1259.</Citation>
</Reference>
<Reference>
<Citation>Fischer I, Dainat J, Ranwez V, Glémin S, Dufayard JF, Chantret N. 2014. Impact of recurrent gene duplication on adaptation of plant genomes. BMC Plant Biology 14: e15.</Citation>
</Reference>
<Reference>
<Citation>Fischer I, Diévart A, Droc G, Dufayard JF, Chantret N. 2016. Evolutionary dynamics of the leucine-rich repeat receptor-like kinase (LRR-RLK) subfamily in angiosperms. Plant Physiology 170: 1595-1610.</Citation>
</Reference>
<Reference>
<Citation>Foulongne M, Pascal T, Pfeiffer F, Kervella J. 2003. QTLs for powdery mildew resistance in peach × Prunus davidiana crosses: consistency across generations and environments. Molecular Breeding 12: 33-50.</Citation>
</Reference>
<Reference>
<Citation>Frampton J, Pettersson M, Braham A. 2018. Genetic variation for resistance to Phytophthora root rot in eastern white pine seedlings. Forests 9: e161.</Citation>
</Reference>
<Reference>
<Citation>Freeman JS, Hamilton MG, Lee DJ, Pegg GS, Brawner JT, Tilyard PA, Potts BM. 2019. Comparison of host susceptibilities to native and exotic pathogens provides evidence for pathogen-imposed selection in forest trees. New Phytologist 221: 2261-2272.</Citation>
</Reference>
<Reference>
<Citation>Freeman JS, Potts BM, Vaillancourt RE. 2008. Few Mendelian genes underlie the quantitative response of a forest tree, Eucalyptus globulus, to a natural fungal epidemic. Genetics 178: 563-571.</Citation>
</Reference>
<Reference>
<Citation>Gamal El-Dien O, Ratcliffe B, Klapste J, Chen C, Porth I, El-Kassaby Y. 2015. Prediction accuracies for growth and wood attributes of interior spruce in space using genotyping-by-sequencing. BMC Genomics 16: e370.</Citation>
</Reference>
<Reference>
<Citation>Gilbert GS, Parker IM. 2016. The evolutionary ecology of plant disease: a phylogenetic perspective. Annual Review of Phytopathology 54: 549-578.</Citation>
</Reference>
<Reference>
<Citation>Gilbert GS, Webb CO. 2007. Phylogenetic signal in plant pathogen-host range. Proceedings of the National Academy of Sciences, USA, 104: 4979-4983.</Citation>
</Reference>
<Reference>
<Citation>Gonzalez AM, Marcel TC, Kohutova Z, Stam P, van der Linden CG, Niks RE. 2010. Peroxidase profiling reveals genetic linkage between peroxidase gene clusters and basal host and non-host resistance to rusts and mildew in barley. PLoS ONE 5: e10495.</Citation>
</Reference>
<Reference>
<Citation>Gos G, Wright SI. 2008. Conditional neutrality at two adjacent NBS-LRR disease resistance loci in natural populations of Arabidopsis lyrata. Molecular Ecology 17: 4953-4962.</Citation>
</Reference>
<Reference>
<Citation>Gould SJ, Vrba ES. 1982. Exaptation - a missing term in the science of form. Paleobiology 8: 4-15.</Citation>
</Reference>
<Reference>
<Citation>Grattapaglia D, Sederoff R. 1994. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross mapping strategy and RAPD markers. Genetics 137: 1121-1137.</Citation>
</Reference>
<Reference>
<Citation>Greeff C, Roux M, Mundy J, Petersen M. 2012. Receptor-like kinase complexes in plant innate immunity. Frontiers in Plant Science 3: e209.</Citation>
</Reference>
<Reference>
<Citation>Haley CS, Knott SA. 1992. A simple regression method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69: 315-324.</Citation>
</Reference>
<Reference>
<Citation>Hall D, Hallingbäck HR, Wu HX. 2016. Estimation of number and size of QTL effects in forest tree traits. Tree Genetics & Genomes 12: e110.</Citation>
</Reference>
<Reference>
<Citation>Hanada K, Zou C, Lehti-Shiu MD, Shinozaki K, Shiu SH. 2008. Importance of lineage-specific expansion of plant tandem duplicates in the adaptive response to environmental stimuli. Plant Physiology 148: 993-1003.</Citation>
</Reference>
<Reference>
<Citation>Hansen E, Delatour C. 1999. Phytophthora species in oak forests of north-east France. Annals of Forest Science 56: 539-547.</Citation>
</Reference>
<Reference>
<Citation>Hayden KJ, Nettel A, Dodd RS, Garbelotto M. 2011. Will all the trees fall? Variable resistance to an introduced forest disease in a highly susceptible host. Forest Ecology and Management 261: 1781-1791.</Citation>
</Reference>
<Reference>
<Citation>Hüberli D, Tommerup IC, Colquhoun IJ, St John Hardy, GE. 2002. Evaluation of resistance to Phytophthora cinnamomi in seed-grown trees and clonal lines of Eucalyptus marginata inoculated in lateral branches and roots. Plant Pathology 51: 435-442.</Citation>
</Reference>
<Reference>
<Citation>Hückelhoven R, Eichmann R, Weis C, Hoefle C, Proels RK. 2013. Genetic loss of susceptibility: a costly route to disease resistance? Plant Pathology 62: 56-62.</Citation>
</Reference>
<Reference>
<Citation>Iovieno P, Andolfo G, Schiavulli A, Catalano D, Ricciardi L, Frusciante L, Ercolano MR, Pavan S. 2015. Structure, evolution and functional inference on the Mildew Locus O (MLO) gene family in three cultivated Cucurbitaceae spp. BMC Genomics 16: e1112.</Citation>
</Reference>
<Reference>
<Citation>Jakuschkin B, Fievet V, Schwaller L, Fort T, Robin C, Vacher C. 2016. Deciphering the pathobiome: intra and interkingdom interactions involving the pathogen Erysiphe alphitoides. Microbial Ecology 72: 870-880.</Citation>
</Reference>
<Reference>
<Citation>Jones JDG, Dangl JL. 2006. The plant immune system. Nature 444: 323-329.</Citation>
</Reference>
<Reference>
<Citation>Jorge V, Dowkiw A, Faivre-Rampant P, Bastien C. 2005. Genetic architecture of qualitative and quantitative Melampsora larici-populina leaf rust resistance in hybrid poplar: genetic mapping and QTL detection. New Phytologist 167: 113-127.</Citation>
</Reference>
<Reference>
<Citation>Junghans DT, Alfenas AC, Brommonschenkel SH, Oda S, Mello EJ, Grattapaglia D. 2003. Resistance to rust (Puccinia psidii Winter) in Eucalyptus: mode of inheritance and mapping of a major gene with RAPD markers. Theoretical and Applied Genetics 108: 175-180.</Citation>
</Reference>
<Reference>
<Citation>Kessler SA, Shimosato-Asano H, Keinath NF, Wuest SE, Ingram G, Panstruga R, Grossniklaus U. 2010. Conserved molecular components for pollen tube reception and fungal invasion. Science 330: 968-971.</Citation>
</Reference>
<Reference>
<Citation>Kim MS, Cho SM, Kang EY, Im YJ, Hwangbo H, Kim YC, Ryu C-M, Yang KY, Chung GC, Cho BH. 2008. Galactinol is a signaling component of the induced systemic resistance caused by Pseudomonas chlororaphis O6 root colonization. Molecular Plant-Microbe Interactions 21: 1643-1653.</Citation>
</Reference>
<Reference>
<Citation>Kinloch BB. 2003. White pine blister rust in North America: past and prognosis. Phytopathology 93: 1044-1047.</Citation>
</Reference>
<Reference>
<Citation>Kosambi DD. 1943. The estimation of map distances from recombination values. Annals of Human Genetics 12: 172-175.</Citation>
</Reference>
<Reference>
<Citation>Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323: 1360-1363.</Citation>
</Reference>
<Reference>
<Citation>Kubisiak TL, Nelson CD, Staton ME, Zhebentyayeva T, Smith C, Olukolu BA, Fang GC, Hebard FV, Anagnostakis S, Wheeler N et al. 2013. A transcriptome-based genetic map of Chinese chestnut (Castanea mollissima) and identification of regions of segmental homology with peach (Prunus persica). Tree Genetics & Genomes 9: 557-571.</Citation>
</Reference>
<Reference>
<Citation>Kurth F, Mailänder S, Bönn M, Feldhahn L, Herrmann S, Große I, Buscot F, Schrey SD, Tarkka MT. 2014. Streptomyces-induced resistance against oak powdery mildew involves host plant responses in defense, photosynthesis, and secondary metabolism pathways. Molecular Plant-Microbe Interactions 27: 891-900.</Citation>
</Reference>
<Reference>
<Citation>Kusch S, Panstruga R. 2017. mlo-based resistance: an apparently universal “weapon” to defeat powdery mildew disease. Molecular Plant-Microbe Interactions 30: 179-189.</Citation>
</Reference>
<Reference>
<Citation>La Mantia J, Unda F, Douglas CJ, Mansfield SD, Hamelin R. 2017. Overexpression of AtGolS3 and CsRFS in poplar enhances ROS tolerance and represses defense response to leaf rust disease. Tree Physiology 38: 457-470.</Citation>
</Reference>
<Reference>
<Citation>Lawrence M, Huber W, Pagès H, Aboyoun P, Carlson M, Gentleman R, Morgan MT, Carey VJ. 2013. Software for computing and annotating genomic ranges. PLoS Computational Biology 9: e1003118.</Citation>
</Reference>
<Reference>
<Citation>Lespinasse D, Grivet L, Troispoux V, Rodier-Goud M, Pinard F, Seguin M. 2000. Identification of QTLs involved in the resistance to South American leaf blight (Microcyclus ulei) in the rubber tree. Theoretical and Applied Genetics 100: 975-984.</Citation>
</Reference>
<Reference>
<Citation>Li C, Wu HM, Cheung AY. 2016. FERONIA and her pals: functions and mechanisms. Plant Physiology 171: 2379-2392.</Citation>
</Reference>
<Reference>
<Citation>Li X, Bi Z, Di R, Liang P, He Q, Liu W, Miao W, Zheng F. 2016. Identification of powdery mildew responsive genes in Hevea brasiliensis through mRNA differential display. International Journal of Molecular Sciences 17, E181.</Citation>
</Reference>
<Reference>
<Citation>Liebhold AM, Von Holle B, McCullough DG, Aukema JE, Britton K, Frankel SJ. 2010. Historical accumulation of nonindigenous forest pests in the continental United States. Bioscience 60: 886-897.</Citation>
</Reference>
<Reference>
<Citation>Limkaisang S, Cunnington JH, Wui LK, Salleh B, Sato Y, Divarangkoon R, Fangfuk W, To-anun C, Takamatsu S. 2006. Molecular phylogenetic analyses reveal a close relationship between powdery mildew fungi on some tropical trees and Erysiphe alphitoides, an oak powdery mildew. Mycoscience 47: 327-335.</Citation>
</Reference>
<Reference>
<Citation>Lind M, Källman T, Chen J, Ma X-F, Bousquet J, Morgante M, Zaina G, Karlsson B, Elfstrand M, Lascoux M et al. 2014. A Picea abies linkage map based on SNP markers identifies QTLs for four aspects of resistance to Heterobasidion parviporum infection. PLoS ONE 9: e101049.</Citation>
</Reference>
<Reference>
<Citation>Lonsdale D. 2015. Review of oak mildew, with particular reference to mature and veteran trees in Britain. Arboricultural Journal 37: 61-84.</Citation>
</Reference>
<Reference>
<Citation>Lovett GM, Weiss M, Liebhold AM, Holmes TP, Leung B, Lambert KF, Orwig DA, Campbell FT, Rosenthal J, McCullough DG et al. 2016. Nonnative forest insects and pathogens in the United States: impacts and policy options. Ecological Applications 26: 1437-1455.</Citation>
</Reference>
<Reference>
<Citation>Mamani EMC, Bueno NW, Faria DA, Guimarães LMS, Lau D, Alfenas AC, Grattapaglia D. 2010. Positioning of the major locus for Puccinia psidii rust resistance (Ppr1) on the Eucalyptus reference map and its validation across unrelated pedigrees. Tree Genetics & Genomes 6: 953-962.</Citation>
</Reference>
<Reference>
<Citation>Marçais B, Desprez-Loustau M-L. 2014. European oak powdery mildew: impact on trees, effects of environmental factors, and potential effects of climate change. Annals of Forest Science 71: 633-642.</Citation>
</Reference>
<Reference>
<Citation>Marçais B, Piou D, Dezette D, Desprez-Loustau M-L. 2016. Can oak powdery mildew severity be explained by indirect effects of climate on the composition of the Erysiphe pathogenic complex? Phytopathology 107: 570-579.</Citation>
</Reference>
<Reference>
<Citation>McKinney LV, Nielsen LR, Collinge DB, Thomsen IM, Hansen JK, Kjaer ED. 2014. The ash dieback crisis: genetic variation in resistance can prove a long-term solution. Plant Pathology 63: 485-499.</Citation>
</Reference>
<Reference>
<Citation>Mougou A, Dutech C, Desprez-Loustau ML. 2008. New insights into the identity and origin of the causal agent of oak powdery mildew in Europe. Forest Pathology 38: 275-287.</Citation>
</Reference>
<Reference>
<Citation>Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133-142.</Citation>
</Reference>
<Reference>
<Citation>Newcombe G. 1998. A review of exapted resistance to diseases of Populus. European Journal of Forest Pathology 28: 209-216.</Citation>
</Reference>
<Reference>
<Citation>Newcombe G, Dugan FM. 2010. Fungal pathogens of plants in the Homogocene. In: Gherbawy Y, Voigt K, eds. Molecular identification of fungi. Berlin, Germany: Springer, 3-34.</Citation>
</Reference>
<Reference>
<Citation>Olukolu BA, Nelson CD, Abbott AG. 2012. Mapping resistance to Phytophthora cinnamomi in chestnut (Castanea sp.). In: Sniezko Richard A, Yanchuk AD, Kliejunas JT, Palmieri KM, Alexander JM, Frankel SJ (tech. coords). Proceedings of the fourth international workshop on the genetics of host-parasite interactions in forestry: disease and insect resistance in forest trees. Gen. Tech. Rep. PSW-GTR-240. Albany, CA, USA: Pacific Southwest Research Station, Forest Service, US Department of Agriculture, 177.</Citation>
</Reference>
<Reference>
<Citation>Panstruga R, Kuhn H. 2018. Mutual interplay between phytopathogenic powdery mildew fungi and other microorganisms. Molecular Plant Pathology 20: 463-470.</Citation>
</Reference>
<Reference>
<Citation>Parker IM, Gilbert GS. 2004. The evolutionary ecology of novel plant-pathogen interactions. Annual Review of Ecology, Evolution, and Systematics 35: 675-700.</Citation>
</Reference>
<Reference>
<Citation>Pepori AL, Michelozzi M, Santini A, Cencetti G, Bonello P, Gonthier P, Sebastiani F, Luchi N. 2019. Comparative transcriptional and metabolic responses of Pinus pinea to a native and a non-native Heterobasidion species. Tree Physiology 39: 31-44.</Citation>
</Reference>
<Reference>
<Citation>Plomion C, Aury J-M, Amselem J, Leroy T, Murat F, Duplessis S, Faye S, Francillonne N, Labadie K, Le Provost G et al. 2018. Oak genome reveals facets of long lifespan. Nature Plants 4: 440-452.</Citation>
</Reference>
<Reference>
<Citation>Rajaraman J, Douchkov D, Hensel G, Stefanato FL, Gordon A, Ereful N, Caldararu OF, Petrescu A-J, Kumlehn J, Boyd LA et al. 2016. An LRR/malectin receptor-like kinase mediates resistance to non-adapted and adapted powdery mildew fungi in barley and wheat. Frontiers in Plant Science 7: e1836.</Citation>
</Reference>
<Reference>
<Citation>Rayapuram C, Jensen MK, Maiser F, Shanir JV, Hornshøj H, Rung JH, Gregersen PL, Schweizer P, Collinge DB, Lyngkjaer MF. 2012. Regulation of basal resistance by a powdery mildew-induced cysteine-rich receptor-like protein kinase in barley. Molecular Plant Pathology 13: 135-147.</Citation>
</Reference>
<Reference>
<Citation>Rellstab C, Zoller S, Walthert L, Lesur I, Pluess AR, Graf R, Bodenes C, Sperisen C, Kremer K, Gugerli F. 2016. Signatures of local adaptation in candidate genes of oaks (Quercus spp.) with respect to present and future climatic conditions. Molecular Ecology 23: 5907-5924.</Citation>
</Reference>
<Reference>
<Citation>Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, Grattapaglia D. 2017. Regional heritability mapping and genome-wide association identify loci for complex growth, wood and disease resistance traits in Eucalyptus. New Phytologist 213: 1287-1300.</Citation>
</Reference>
<Reference>
<Citation>Robin C, Desprez-Loustau M-L. 1998. Testing variability in pathogenicity of Phytophthora cinnamomi. European Journal of Plant Pathology 104: 465-475.</Citation>
</Reference>
<Reference>
<Citation>Rosado CCG, da Silva Guimarães LM, Faria DA, de Resende MDV, Cruz CD, Grattapaglia D, Alfenas AC. 2016. QTL mapping for resistance to Ceratocystis wilt in Eucalyptus. Tree Genetics & Genomes 12: e72.</Citation>
</Reference>
<Reference>
<Citation>Roux F, Voisin D, Badet T, Balagué C, Barlet X, Huard-Chauveau C, Roby D, Raffaele S. 2014. Resistance to phytopathogens e tutti quanti: placing plant quantitative disease resistance on the map. Molecular Plant Pathology 15: 427-432.</Citation>
</Reference>
<Reference>
<Citation>Samils B, Rönnberg-Wästljung A-C, Stenlid J. 2011. QTL mapping of resistance to leaf rust in Salix. Tree Genetics & Genomes 7: 1219-1235.</Citation>
</Reference>
<Reference>
<Citation>Santini A, Ghelardini L, De Pace C, Desprez-Loustau ML, Capretti P, Chandelier A, Cech T, Chira D, Diamandis S, Gaitniekis T et al. 2013. Biogeographical patterns and determinants of invasion by forest pathogens in Europe. New Phytologist 197: 238-250.</Citation>
</Reference>
<Reference>
<Citation>Santos C, Machado H, Correia I, Gomes F, Gomes-Laranjo J, Costa R. 2015. Phenotyping Castanea hybrids for Phytophthora cinnamomi resistance. Plant Pathology 64: 901-910.</Citation>
</Reference>
<Reference>
<Citation>Schlarbaum SE, Hebard F, Spaine PC, Kamalay JC. 1998. Three American tragedies: chestnut blight, butternut canker, and Dutch elm disease. In: Britton KO, ed. Exotic pests of eastern forests: conference proceedings. Nashville, TN, USA. US Forest Service and Tennessee Exotic Pest Plant Council, 45-54.</Citation>
</Reference>
<Reference>
<Citation>Schulze-Lefert P, Panstruga R. 2011. A molecular evolutionary concept connecting nonhost resistance, pathogen host range, and pathogen speciation. Trends in Plant Science 16: 117-125.</Citation>
</Reference>
<Reference>
<Citation>Sniezko RA, Smith J, Liu J-J, Hamelin RC. 2014. Genetic resistance to fusiform rust in southern pines and white pine blister rust in white pines - a contrasting tale of two rust pathosystems - current status and future prospects. Forests 5: 2050-2083.</Citation>
</Reference>
<Reference>
<Citation>Staton M, Zhebentyayeva T, Olukolu B, Fang GC, Nelson D, Carlson JE, Abbott AG. 2015. Substantial genome synteny preservation among woody angiosperm species: comparative genomics of Chinese chestnut (Castanea mollissima) and plant reference genomes. BMC Genomics 16: e744.</Citation>
</Reference>
<Reference>
<Citation>Strong DR, Levin DA. 1975. Species richness of the parasitic fungi of British trees. Proceedings of the National Academy of Sciences, USA 72: 2116-2119.</Citation>
</Reference>
<Reference>
<Citation>Stukely MJC, Crane CE. 1994. Genetically based resistance of Eucalyptus marginata to Phytophthora cinnamomi. Phytopathology 84: 650-656.</Citation>
</Reference>
<Reference>
<Citation>Tack AJM, Thrall PH, Barrett LG, Burdon JJ, Laine A-L. 2012. Variation in infectivity and aggressiveness in space and time in wild host-pathogen systems: causes and consequences. Journal of Evolutionary Biology 25: 1918-1936.</Citation>
</Reference>
<Reference>
<Citation>Takamatsu S, Braun U, Limkaisang S, Kom-un S, Sato Y, Cunnington JH. 2007. Phylogeny and taxonomy of the oak powdery mildew Erysiphe alphitoides sensu lato. Mycological Research 111: 809-826.</Citation>
</Reference>
<Reference>
<Citation>Tarkka MT, Herrmann S, Wubet T, Feldhahn L, Recht S, Kurth F, Mailänder S, Bönn M, Neef M, Angay O et al. 2013. OakContigDF159.1, a reference library for studying differential gene expression in Quercus robur during controlled biotic interactions: use for quantitative transcriptomic profiling of oak roots in ectomycorrhizal symbiosis. New Phytologist 199: 529-540.</Citation>
</Reference>
<Reference>
<Citation>Thrall PH, Laine AL, Ravensdale M, Nemri A, Dodds PN, Barrett LG, Burdon JJ. 2012. Rapid genetic change underpins antagonistic coevolution in a natural host-pathogen metapopulation. Ecology Letters 15: 425-435.</Citation>
</Reference>
<Reference>
<Citation>Tobias PA, Guest DI, Külheim C, Hsieh J-F, Park RF. 2016. A curious case of resistance to a new encounter pathogen: myrtle rust in Australia. Molecular Plant Pathology 17: 783-788.</Citation>
</Reference>
<Reference>
<Citation>Vacher C, Piou D, Desprez-Loustau M-L. 2008. Architecture of an antagonistic tree/fungus network: the asymmetric influence of past evolutionary history. PLoS ONE 3: e1740.</Citation>
</Reference>
<Reference>
<Citation>Xiao S, Ellwood S, Calis O, Patrick E, Li T, Coleman M, Turner JG. 2001. Broad-spectrum mildew resistance in Arabidopsis thaliana mediated by RPW8. Science 291: 118-120.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
<li>Tunisie</li>
</country>
<region>
<li>Aquitaine</li>
<li>Grand Est</li>
<li>Languedoc-Roussillon</li>
<li>Lorraine (région)</li>
<li>Nouvelle-Aquitaine</li>
<li>Occitanie (région administrative)</li>
</region>
<orgName>
<li>Université de Bordeaux</li>
<li>Université de Lorraine</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Nouvelle-Aquitaine">
<name sortKey="Bartholome, Jerome" sort="Bartholome, Jerome" uniqKey="Bartholome J" first="Jérôme" last="Bartholomé">Jérôme Bartholomé</name>
</region>
<name sortKey="Bartholome, Jerome" sort="Bartholome, Jerome" uniqKey="Bartholome J" first="Jérôme" last="Bartholomé">Jérôme Bartholomé</name>
<name sortKey="Bartholome, Jerome" sort="Bartholome, Jerome" uniqKey="Bartholome J" first="Jérôme" last="Bartholomé">Jérôme Bartholomé</name>
<name sortKey="Bodenes, Catherine" sort="Bodenes, Catherine" uniqKey="Bodenes C" first="Catherine" last="Bodénès">Catherine Bodénès</name>
<name sortKey="Brachi, Benjamin" sort="Brachi, Benjamin" uniqKey="Brachi B" first="Benjamin" last="Brachi">Benjamin Brachi</name>
<name sortKey="Desprez Loustau, Marie Laure" sort="Desprez Loustau, Marie Laure" uniqKey="Desprez Loustau M" first="Marie-Laure" last="Desprez-Loustau">Marie-Laure Desprez-Loustau</name>
<name sortKey="Marcais, Benoit" sort="Marcais, Benoit" uniqKey="Marcais B" first="Benoit" last="Marçais">Benoit Marçais</name>
<name sortKey="Mougou Hamdane, Amira" sort="Mougou Hamdane, Amira" uniqKey="Mougou Hamdane A" first="Amira" last="Mougou-Hamdane">Amira Mougou-Hamdane</name>
<name sortKey="Plomion, Christophe" sort="Plomion, Christophe" uniqKey="Plomion C" first="Christophe" last="Plomion">Christophe Plomion</name>
<name sortKey="Robin, Cecile" sort="Robin, Cecile" uniqKey="Robin C" first="Cécile" last="Robin">Cécile Robin</name>
</country>
<country name="Tunisie">
<noRegion>
<name sortKey="Mougou Hamdane, Amira" sort="Mougou Hamdane, Amira" uniqKey="Mougou Hamdane A" first="Amira" last="Mougou-Hamdane">Amira Mougou-Hamdane</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000026 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000026 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:31711257
   |texte=   The genetics of exapted resistance to two exotic pathogens in pedunculate oak.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:31711257" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024